Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.447
Filtrar
1.
Zhongguo Gu Shang ; 37(4): 352-7, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38664204

RESUMEN

OBJECTIVE: To compare the clinical outcomes of using elastic intramedullary nail and plate to fix fibular fracture. METHODS: The 60 patients with tibiofibular fractures admitted from January 2015 to December 2022 were divided into two groups:intramedullary nail group and plate group, 30 cases each, intramedullary nail group was treated with elastic intramedullary nail fixation group, plate group was treated with steel plate and screw fixation group. Intramedullary nail group, there were 18 males and 12 females, aged from 22 to 75 years old with an average of (39.4±9.8) years old, including 24 cases of traffic accidents injury, 6 cases of falling injury, 23 cases of closed fractures, 7 cases of open fractures. Steel plate group, there were 15 males and 15 females, aged from 24 to 78 years old with an average of (38.6±10.2) years old. The 22 cases were injured by traffic accident, 8 cases were injured by falling. The 24 cases were closed fractures and 6 cases were open fractures. The operation time, intraoperative bleeding, American Orthopedic Foot and Ankle Society (AOFAS) ankle and hind foot scores, clinical healing time of fibula and the incidence of wound complications were compared between the two groups. RESULTS: The patients in both groups were followed up for 6 to 21 months, with an average of (14.0±2.8) months. Compared with plate group, intramedullary nail group had shorter operative time, less bleeding, shorter clinical healing time of fibula, and lower infection rate of incision, and the difference was statistically significant (P<0.05). There were 2 cases of delayed healing in intramedullary nail group, 1 case of nonunion in plate group, and 2 cases of delayed healing in plate group, and there was no statistically significant difference between the two groups (P>0.05). In the last follow-up, according to the AOFAS scoring standard, the ankle function in intramedullary nail group was excellent in 17 cases, good in 12 cases, fair in 1 case, with an average of (88.33±4.57) points, while in plate group, excellent in 16 cases, good in 10 cases, fair in 4 cases, with an average of (87.00±4.14) points;There was no statistical difference between the two groups (P>0.05). CONCLUSION: Elastic intramedullary nail has the advantages of short operation time, less intraoperative bleeding, short fracture healing time and less incision complications in the treatment of fibular fracture, which is worthy of clinical application.


Asunto(s)
Clavos Ortopédicos , Placas Óseas , Peroné , Fracturas de la Tibia , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Peroné/lesiones , Peroné/cirugía , Fracturas de la Tibia/cirugía , Titanio , Fijación Intramedular de Fracturas/métodos , Fijación Intramedular de Fracturas/instrumentación , Adulto Joven , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Fijación Interna de Fracturas/métodos , Fijación Interna de Fracturas/instrumentación , Acero
2.
PLoS One ; 19(4): e0298266, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573921

RESUMEN

A mechanical device inspired by the pistol shrimp snapper claw was developed. This technology features a claw characterized by a periodic opening/closing motion, at a controlled frequency, capable of producing oscillating flows at transitional Reynolds numbers. An innovative method was also proposed for determining the corrosion rate of carbon steel samples under oscillating acidic streams (aqueous solution of HCl). By employing very-thin carbon steel specimens (25 µm thickness), with one side coated with Zn and not exposed to the stream, it became possible to electrochemically sense the Zn surface once the steel sample was perforated, thus providing the average dissolution rate into the most relevant pit on the steel surface. Furthermore, a laser light positioned beneath the metallic sample, along with a camera programmed to periodically capture images of the steel surface, facilitated the accurate counting of the number of newly formed pits. The system consisting of the thin steel sample and the Zn coating can be seen as a type of corrosion sensor. Furthermore, the proposed laser illumination method allows corroborating the electrochemical detection of pits and also establishing their location. The techniques crafted in this study pave the way for developing alternative corrosion sensors that boast appealing attributes: affordability, compactness, and acceptable accuracy to detect in time and space localized damage.


Asunto(s)
Carbono , Acero , Carbono/química , Acero/química , Corrosión , Ríos , Ácidos/química
3.
PLoS One ; 19(4): e0297668, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574039

RESUMEN

To address the problem of large deformations in weak surrounding rock tunnels under high ground stress, which cause damage to initial support structures, this study proposes a novel type of circumferential pressure-relief joint based on the concept of relieving deformation pressure of the surrounding rock. Key parameters of the pressure-relief joint, such as initial bearing capacity peak, constant bearing capacity, and allowable pressure-relief displacement, were obtained through numerical simulations and laboratory experiments. A comparison was made between the mechanical characteristics of rigid joints and the new type of pressure-relief joint. The applicability of the pressure-relief joint was verified through field tests, monitoring the surrounding rock pressure, internal forces in the steel frames, and the convergence displacement of the support structure. The results show that: (1) In the elastic stage, the stiffness of the new pressure-relief joint is similar to that of rigid joints. In the plastic stage, rigid joints fail directly, whereas the pressure-relief joint can control deformation and effectively release the deformation pressure of the surrounding rock while providing a constant bearing capacity. (2) The right arch foot in the experiment had poor rock quality, leading to high stress in the steel frame and significant horizontal displacement. After the deformation of the pressure-relief joint, the stress in the surrounding rock and steel frame significantly reduced, and the rate of horizontal deformation of the support structure slowed down. (3) The vertical and horizontal final displacements of the pressure-relief joint in the experiment were 61mm and 15mm, respectively, which did not exceed the allowable deformation values. The components of the support structure remained intact, ensuring safety. However, this study has limitations: the design of the new pressure-relief joint only allows for a vertical deformation of 150mm and a horizontal deformation of 50mm, limiting the range of pressure-relief deformation.


Asunto(s)
Pie , Laboratorios , Humanos , Extremidad Inferior , Márgenes de Escisión , Acero
4.
Sci Total Environ ; 927: 172297, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588736

RESUMEN

Soil pollution by As and Hg is a pressing environmental issue given their persistence. The intricate removal processes and subsequent accumulation of these elements in soil adversely impact plant growth and pose risks to other organisms in the food chain and to underground aquifers. Here we assessed the effectiveness of non-toxic industrial byproducts, namely coal fly ash and steelmaking slag, as soil amendments, both independently and in conjunction with an organic fertilizer. This approach was coupled with a phytoremediation technique involving Betula pubescens to tackle soil highly contaminated. Greenhouse experiments were conducted to evaluate amendments' impact on the growth, physiology, and biochemistry of the plant. Additionally, a permeable barrier made of byproducts was placed beneath the soil to treat leachates. The application of the byproducts reduced pollutant availability, the production of contaminated leachates, and pollutant accumulation in plants, thereby promoting plant development and survival. Conversely, the addition of the fertilizer alone led to an increase in As accumulation in plants and induced the production of antioxidant compounds such as carotenoids and free proline. Notably, all amendments led to increased thiolic compound production without affecting chlorophyll synthesis. While fertilizer application significantly decreased parameters associated with oxidative stress, such as hydrogen peroxide and malondialdehyde, no substantial reduction was observed after byproduct application. Thermal desorption analysis of the byproducts revealed Hg immobilization mechanisms, thereby indicating retention of this metalloid in the form of Hg chloride. In summary, the revalorization of industrial byproducts in the context of the circular economy holds promise for effectively immobilizing metal(loid)s in heavily polluted soils. Additionally, this approach can be enhanced through synergies with phytoremediation.


Asunto(s)
Betula , Biodegradación Ambiental , Ceniza del Carbón , Contaminantes del Suelo , Arsénico , Mercurio , Minería , Fertilizantes , Acero , Restauración y Remediación Ambiental/métodos , Suelo/química , Residuos Industriales
5.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 313-317, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38595250

RESUMEN

OBJECTIVE: To analyze and summarize the medical security situation of the snowmobile, sled, and steel frame snowmobile tracks at the National Sliding Centre, and to provide experience for future event hosting and medical security work for mass ice and snow sports. METHODS: Retrospective analysis of injuries and treatment of athletes participating in the International Training Week and World Cup for Ski, Sled, and Steel Frame Ski from October to November 2021(hereinafter referred to as "International Training Week"), as well as the Ski, Sled, and Steel Frame Ski events at the Beijing Winter Olympics in February 2022 (hereinafter referred to as the "Beijing Winter Olympics"). We referred to and drew on the "Medical Security Standards for Winter Snow Sports" to develop specific classification standards for analyzing injured areas, types of injuries, and accident locations. RESULTS: A total of 743 athletes participated in the International Training Week and the Beijing Winter Olympics. During the competition, there were 58 incidents of overturning, prying, and collision, of which 28 (28 athletes) were injured, accounting for 48.3% of the total accidents and 3.8% of the total number of athletes. Among them, there were 9 males (32.1%) and 19 females (67.9%), with an average age of (26.3 ± 4.7) years. Among the 28 injured athletes, 20 cases (71.4%) received on-site treatment for Class Ⅰ injuries, while 8 cases (28.6%) had more severe injuries, including Class Ⅱ injuries (7 cases) and Class Ⅲ injuries (1 case), which were referred to designated hospitals for further treatment. Among the 28 injured athletes, 3 cases (10.7%) experienced multiple injuries, including 2 cases of 2 injuries and 1 case of 3 injuries. The most common injuries were in the ankle and toes (10/32, 31.3%). Out of 28 injured athletes, one (3.6%) experienced two types of injuries simultaneously, with joint and/or ligament injuries being the most common (11/29, 37.9%). The most accident prone point on the track was the ninth curve (18/58, 31.0%). CONCLUSION: Through the analysis and summary of medical security work, it can provide better experience and reference for the future development of snowmobile, sled, and steel frame snowmobile sports in China, making the National Snowy and Ski Center truly a sustainable Olympic heritage.


Asunto(s)
Traumatismos en Atletas , Esquí , Masculino , Femenino , Humanos , Adulto Joven , Adulto , Traumatismos en Atletas/epidemiología , Traumatismos en Atletas/terapia , Beijing/epidemiología , Estudios Retrospectivos , Acero
6.
Appl Microbiol Biotechnol ; 108(1): 253, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441693

RESUMEN

The synergistic corrosion effect of acid-producing bacteria (APB) and magnetite on carbon steel corrosion was assessed using two different microbial consortia. A synergistic corrosion effect was observed exclusively with Consortium 2, which was composed of Enterobacter sp., Pseudomonas sp., and Tepidibacillus sp. When Consortium 2 was accompanied by magnetite, uniform corrosion and pitting rates were one-time higher (0.094 mm/year and 0.777 mm/year, respectively) than the sum of the individual corrosion rates promoted by the consortium and deposit separately (0.084 and 0.648 mm/year, respectively). The synergistic corrosion effect observed exclusively with Consortium 2 is attributed to its microbial community structure. Consortium 2 exhibited higher microbial diversity that benefited the metabolic status of the community. Although both consortia induced acidification of the test solution and metal surface through glucose fermentation, heightened activity levels of Consortium 2, along with increased surface roughness caused by magnetite, contributed to the distinct synergistic corrosion effect observed with Consortium 2 and magnetite. KEY POINTS: • APB and magnetite have a synergistic corrosion effect on carbon steel. • The microbial composition of APB consortia drives the synergistic corrosion effect. • Magnetite increases carbon steel surface roughness.


Asunto(s)
Óxido Ferrosoférrico , Microbiota , Corrosión , Carbono , Acero
7.
Environ Sci Pollut Res Int ; 31(17): 26300-26314, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499931

RESUMEN

As the demand for automotive materials grows more stringent in environmental considerations, it becomes imperative to conduct thorough environmental impact assessments of dual-phase automotive strip steel (DP steel). However, the absence of detailed and comparable studies has left the carbon footprint of DP steel and its sources largely unknown. This study addresses this gap by establishing a cradle-to-gate life cycle model for DP steel, encompassing on-site production, energy systems, and upstream processes. The analysis identifies and scrutinizes key factors influencing the carbon footprint, with a focus on upstream mining, transportation, and on-site production processes. The results indicate that the carbon footprint of DP steel is 2.721 kgCO2-eq/kgDP, with on-site processes contributing significantly at 88.1%. Sensitivity analysis is employed to assess the impact of changes in resource structure, on-site energy, CO2 emission factors, and byproduct recovery on the carbon footprint. Proposals for mitigating carbon emissions in DP steel production include enhancing process gas recovery, transitioning to cleaner energy sources, and reducing the hot metal-to-steel ratio. These findings offer valuable insights for steering steel production towards environmentally sustainable practices.


Asunto(s)
Huella de Carbono , Acero , Animales , Metales , Carbono , Estadios del Ciclo de Vida , Dióxido de Carbono
8.
Int J Biol Macromol ; 264(Pt 2): 130769, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467215

RESUMEN

Two novel chitosan derivatives (water soluble and acid soluble) modified with thiocarbohydrazide were produced by a quick and easy technique using formaldehyde as links. The novel compounds were synthesized and then characterized by thermogravimetric analysis, elemental analysis, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. Their surface morphologies were examined using scanning electron microscopy. These chitosan derivatives could produce pH-dependent gels. The behavior of mild steel in 5 % acetic acid, including both inhibitors at various concentrations, was investigated using gravimetric and electrochemical experiments. According to the early findings, both compounds (TCFACN and TCFWCN) functioned as mixed-type metal corrosion inhibitors. Both inhibitors showed their best corrosion inhibition efficiency at 80 mg L-1. TCFACN and TCFWCN, showed approximately 92 % and 94 % corrosion inhibition, respectively, at an optimal concentration of 80 mg L-1, according to electrochemical analysis. In the corrosion test, the water contact angle of the polished MS sample at 87.90 °C was reduced to 51 °C. The water contact angles for MS inhibited by TCFACN and TCFWCN in the same electrolyte were greater, measuring 78.10 °C and 93.10 °C, respectively. The theoretical results also support the experimental findings.


Asunto(s)
Quitosano , Quitosano/química , Corrosión , Adsorción , Ácidos , Acero/química , Agua
9.
Waste Manag ; 180: 36-46, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503032

RESUMEN

As a by-product of the steelmaking industry, the large-volume production and accumulation of steel converter slag cause environmental issues such as land occupation and dust pollution. Since metal salts of unsaturated carboxylic acid can be used to reinforce rubber, this study explores the innovative application of in-situ modified steel slag, mainly comprising metal oxides, with methacrylic acid (MAA) as a rubber filler partially replacing carbon black. By etching the surface of steel slag particles with MAA, their surface roughness was increased, and the chemical bonding of metal methacrylate salt was introduced to enhance their interaction with the molecular chain of natural rubber (NR). The results showed that using the steel slag filler effectively shortened the vulcanization molding cycle of NR composites. The MAA in-situ modification effectively improved the interaction between steel slag and NR molecular chains. Meanwhile, the physical and mechanical properties, fatigue properties, and dynamic mechanical properties of the experimental group with MAA in-situ modified steel slag (MAA-in-situ-m-SS) were significantly enhanced compared with those of NR composites partially filled with unmodified slag. With the dosage of 7.5 phr or 10 phr, the above properties matched or even exceeded those of NR composites purely filled with carbon black. More importantly, partially replacing carbon black with modified steel slag reduced fossil fuel consumption and greenhouse gas emission from carbon black production. This study pioneered an effective path for the resourceful utilization of steel slag and the green development of the steelmaking and rubber industries.


Asunto(s)
Goma , Residuos Sólidos , Acero/química , Hollín , Residuos Industriales/análisis , Metales , Metacrilatos
10.
J Environ Manage ; 356: 120484, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522276

RESUMEN

The large-scale application of hydrogen steelmaking technology is expected to substantially accelerate the decarbonization process of the iron and steel industry. However, hydrogen steelmaking projects are still in the experimental or demonstration stage, and scientific investment decision-making methods are urgently needed to support the large-scale development of the technology. When assessing the investment value, existing studies usually only consider the intrinsic project value under a specific pathway, while ignoring the option value under realistic multiple uncertainties in terms of technology, market, and policy, leading to an underestimation of the investment value. To address this issue, this study constructs a real options model to explore the optimal investment timing and revenue of the hydrogen steelmaking project, by taking into account multi-dimensional uncertainties stemming from price fluctuations in the steel market, the development of the carbon market, and technological advances. Additionally, the impacts of various subsidy policies on the investment strategy are also investigated. Least Squares Monte Carlo method is applied to overcome computational challenges posed by dynamic programming under multi-dimensional uncertainties. The results show that: (i) Investment is not recommended based on current crude steel price and hydrogen price. (ii) When the annual reduction rate of hydrogen price reaches 5%, the optimal investment timing would advance to 2036. (iii) On this basis, with the introduction of a 20% green hydrogen subsidy policy, the optimal investment timing would be further brought forward to 2033. The implementation of tax incentives would significantly increase the investment value. The investment value would surge from 170 million CNY to 262 million CNY as the tax rate decreases from 20% to zero. The findings could provide reasonable suggestions for investment decisions under realistic volatile environments, as well as scientific references for policy design, thus facilitating the large-scale and high-level development of hydrogen-based steelmaking technology.


Asunto(s)
Inversiones en Salud , Hierro , Incertidumbre , Acero , Industrias
11.
Sci Total Environ ; 925: 171763, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494030

RESUMEN

Microbial biofilms are behind microbiologically influenced corrosion (MIC). Sessile cells in biofilms are many times more concentrated volumetrically than planktonic cells in the bulk fluids, thus providing locally high concentrations of chemicals. More importantly, "electroactive" sessile cells in biofilms are capable of utilizing extracellularly supplied electrons (e.g., from elemental Fe) for intracellular reduction of an oxidant such as sulfate in energy metabolism. MIC directly caused by anaerobic biofilms is classified into two main types based on their mechanisms: extracellular electron transfer MIC (EET-MIC) and metabolite MIC (M-MIC). Sulfate-reducing bacteria (SRB) are notorious for their corrosivity. They can cause EET-MIC in carbon steel, but they can also secrete biogenic H2S to corrode other metals such as Cu directly via M-MIC. This study investigated the use of conductive magnetic nanowires as electron mediators to accelerate and thus identify EET-MIC of C1020 by Desulfovibrio vulgaris. The presence of 40 ppm (w/w) nanowires in ATCC 1249 culture medium at 37 °C resulted in 45 % higher weight loss and 57 % deeper corrosion pits after 7-day incubation. Electrochemical tests using linear polarization resistance and potentiodynamic polarization supported the weight loss data trend. These findings suggest that conductive magnetic nanowires can be employed to identify EET-MIC. The use of insoluble 2 µm long nanowires proved that the extracellular section of the electron transfer process is a bottleneck in SRB MIC of carbon steel.


Asunto(s)
Desulfovibrio vulgaris , Desulfovibrio , Nanocables , Humanos , Acero , Electrones , Carbono/metabolismo , Biopelículas , Desulfovibrio/metabolismo , Corrosión , Sulfatos/metabolismo , Pérdida de Peso
12.
Langmuir ; 40(11): 5738-5752, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38450610

RESUMEN

The pumpkin leaf was extracted by the decoction method, and it was used as an eco-friendly, nontoxic inhibitor of copper in 0.5 M H2SO4 corrosion media. To evaluate the composition and protective capacity of the pumpkin leaf extract, Fourier infrared spectroscopy, electrochemical testing, XPS, AFM, and SEM were employed. The results showed that the pumpkin leaf extract (PLE) is an effective cathode corrosion inhibitor, exhibiting exceptional protection for copper within a specific temperature range. The corrosion inhibition efficiency of the PLE against copper reached 89.98% when the concentration of the PLE reached 800 mg/L. Furthermore, when the temperature and soaking time increased, the corrosion protection efficiency of 800 mg/L PLE on copper consistently remained above 85%. Analysis of the morphology also indicated that the PLE possesses equally effective protection for copper at different temperatures. Furthermore, XPS analysis reveals that the PLE molecules are indeed adsorbed to form an adsorption film, which is consistent with Langmuir monolayer adsorption. Molecular dynamics simulations and quantum chemical calculations were conducted on the main components of the PLE.


Asunto(s)
Cucurbita , Corrosión , Cobre/química , Acero/química , Extractos Vegetales/química
13.
PLoS One ; 19(3): e0297154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38446783

RESUMEN

This study introduces a novel concrete-filled tube (CFT) column system featuring a steel tube comprised of four internal triangular units. The incorporation of these internal triangular units serves to reduce the width-thickness ratio of the steel tube and augment the effective confinement area of the infilled concrete. This design enhancement is anticipated to result in improved structural strength and ductility, contributing to enhanced overall performance and sustainability. To assess the effectiveness of the newly proposed column system, a full-scale test was conducted on five square steel tube column specimens subjected to axial compression. Among these specimens, two adhered to the conventional steel tube column design, while the remaining three featured the new CFT columns with internal triangular units. The shape of the CFT column, the presence of infilled concrete and the presence of openings on the ITUs were considered as test parameters. The test results reveal that the ductility of the newly proposed CFT column system exhibited a minimum 30% improvement compared to the conventional CFT column. In addition, the initial stiffness and axial compressive strength of the new system were found to be comparable to those of the conventional CFT column.


Asunto(s)
Compresión de Datos , Fuerza Compresiva , Fenómenos Físicos , Acero , Resistencia a la Tracción
14.
Toxicol In Vitro ; 97: 105805, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458500

RESUMEN

Metals are used in 3-dimensional (3D) printer filaments in the manufacture of 3D printed objects. Exposure to the filaments, printed objects and emissions from printing may pose health risks from release of toxic metals. This study investigated the cytotoxicity of extruded 3D printer filament leachates in rat and human intestinal cells. Copper-, bronze-, and steel-fill extruded filaments were incubated in acidic media for 2 h. Leachates were adjusted to pH 7 and cells exposed for 4 or 24 h. Concentration- and time-dependent decreases in rat and human cell viability were observed using a colorimetric assay and confirmed by microscopy. Copper- and bronze-fill leachates were more cytotoxic than steel. Copper-fill leachates had the highest copper concentrations by ICP-MS. Exposure to CuSO4 resulted in concentration-dependent cytotoxicity in rat cells. The copper chelator bathocuproine disulphonate alleviated cytotoxicity of CuSO4 and copper-fill leachate, suggesting that copper ions have a role in the cytotoxicity. Hydrogen peroxide increased and glutathione decreased in rat cells exposed to copper-fill leachate, suggesting the formation of reactive oxygen species. Overall, our data indicate that metals released from the acidic exposure of print objects using metal-fill filaments, especially copper, are toxic to rat and human intestinal cells and additional studies are needed.


Asunto(s)
Cobre , Metales , Humanos , Ratas , Animales , Cobre/toxicidad , Intestinos , Acero
15.
Environ Monit Assess ; 196(3): 319, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38418638

RESUMEN

The goal of the current study is to evaluate the heavy metal rainfall contamination in the vicinity brought on by the Erbil Steel Factory in Iraq during the study period. The study's findings revealed the concentration of all studied heavy metals in the precipitation near and around the factory is significantly higher than that of the rural area of Barzan village which is used as a control site. The average concentration of the metals is in descending order manganese (Mn) > lead (Pb) > iron (Fe) > arsenic (As) > cobalt (Co) > selenium (Se) > mercury (Hg) > and cadmium (Cd) for the polluted site. The geo-accumulation index (I-geo) of the heavy metal Mn in the rainfall around the steel factory site is 6.28 > 5 which indicates extreme contamination. While the Igeo values of Cd, As, and Fe are 4.87, 4.54, and 4.04 > 4 that indicate heavy to extreme contamination, for Pb, 3.80 > 3 indicates moderate to heavy contamination, Cd 1.68 > 1 indicates moderate contamination, Hg 0.46 > 0 indicates uncontaminated to moderate contamination, and Se - 0.36 < 0 indicates uncontaminated. The pollution load index (PLI) of the rainwater around the steel factory site is 13.46 > 1, demonstrating that the area is highly metal-contaminated.


Asunto(s)
Contaminación del Aire , Arsénico , Mercurio , Metales Pesados , Selenio , Cadmio , Acero , Irak , Plomo , Monitoreo del Ambiente , Medición de Riesgo , Metales Pesados/análisis , Manganeso , China
16.
Environ Pollut ; 345: 123455, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301818

RESUMEN

Ordinary Portland cement (OPC) is a cost-effective and conventional binder that is widely adopted in brownfield site remediation and redevelopment. However, the substantial carbon dioxide emission during OPC production and the concerns about its undesirable retention capacity for potentially toxic elements strain this strategy. To tackle this objective, we herein tailored four alternative binders (calcium aluminate cement, OPC-activated ground-granulated blast-furnace slag (GGBFS), white-steel-slag activated GGBFS, and alkaline-activated GGBFS) for facilitating immobilization of high Pb content pyrite ash, with the perspectives of enhancing Pb retention and mitigating anthropogenic carbon dioxide emissions. The characterizations revealed that the incorporation of white steel slag efficiently benefits the activity of GGBFS, herein facilitating the hydration products (mainly ettringite and calcium silicate hydrates) precipitation and Pb immobilization. Further, we quantified the cradle-to-gate carbon footprint and cost analysis attributed to each binder-Pb contaminants system, finding that the application of these alternative binders could be pivotal in the envisaged carbon-neutral world if the growth of the OPC-free roadmap continues. The findings suggest that the synergistic use of recycled white steel slag and GGBFS can be proposed as a profitable and sustainable OPC-free candidate to facilitate the management of lead-contaminated brownfield sites. The overall results underscore the potential immobilization mechanisms of Pb in multiple OPC-free/substitution binder systems and highlight the urgent need to bridge the zero-emission insights to sustainable in-situ solidification/stabilization technologies.


Asunto(s)
Dióxido de Carbono , Ceniza del Carbón , Hierro , Sulfuros , Plomo , Acero
17.
Environ Sci Pollut Res Int ; 31(12): 18856-18870, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351356

RESUMEN

Solid waste management is a critical issue worldwide. Effectively utilizing these solid waste resources presents a viable solution. This study focuses on Iron ore tailings (IOTs), a solid waste generated during iron ore processing, which can be used as supplementary cementitious materials (SCMs) but have low reactivity, hindering their large-scale application in concrete production. To address this, ternary SCMs were prepared using ceramic powder (CP) and steel slag (SS) to enhance the performance of concrete incorporating IOTs. The study found that the synergistic effect of CP and SS significantly improved the compressive strength of concrete, with a notable increase of up to 21% compared to concrete with IOTs alone. Mercury intrusion porosimetry (MIP) and backscattering electron (BSE) analyses revealed that the ternary SCMs significantly optimized the characteristics of the interfacial transition zone (ITZ), which in turn enhanced the compressive properties of the concrete. This contributed to maintaining the structural integrity of the concrete, even amidst variations in the pore structure. Importantly, the incorporation of ternary SCMs led to a 23% reduction in carbon emissions, from 400.01 kg CO2/m3 to 307.48 kg CO2/m3, and elevated eco-strength efficiency from 0.1 to 0.14. The study highlights the role of multi-material synergy in developing composite SCMs systems, fostering the sustainable advancement of green building materials.


Asunto(s)
Dióxido de Carbono , Acero , Polvos , Residuos Sólidos , Cerámica , Hierro
18.
Br Poult Sci ; 65(2): 165-178, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38372652

RESUMEN

1. It was hypothesised that perch material and design may affect utility and maintenance energy demand in laying hens, affecting their feed form preferences and daily feed consumption. Accordingly, perch design and feed form on hen performance, gastrointestinal tract functions and some behavioural and welfare-related traits were studied in laying hens (ATAK-S) reared in enriched colony cages from 24 to 40 weeks of age.2. The experiment was a 2 × 2 factorial investigating two perch materials and design (circular steel or mushroom-shaped plastic) and feed form (mash or crumble). A total of 396 hens were randomly assigned to one of the four treatment groups with nine replicates each (11 birds per replicate).3. Except for feeding behaviour and prevalence of foot pad dermatitis at 40 weeks of age, the modification of the perch design did not have a significant effect on the traits examined. Mushroom-shaped plastic perches reduced feeding behaviour (p < 0.01) and the incidence of foot pad dermatitis at 40 weeks of age (p < 0.001).4. Performance traits were not affected by feed form. Intake, final body weight and FCR for crumble-fed laying hens were greater than those fed mash (p < 0.01).5. Hens fed mash had higher (p < 0.01) relative gizzard weights along with lower (p < 0.05) pH values, pancreatic chymotrypsin, amylase and lipase activities (p < 0.05), and duodenal absorption surface areas (p < 0.01). Ultimately, this gave higher protein digestibility (p < 0.05) compared to those receiving crumble.6. In conclusion, in enriched cage rearing systems, mashed feed was preferred over crumble to efficiently maintain productive performance. Compared to circular steel, plastic mushroom-shaped perches were associated with better footpad health and welfare.


Asunto(s)
Dermatitis , Animales , Femenino , Alimentación Animal/análisis , Bienestar del Animal , Pollos , Dermatitis/etiología , Dermatitis/veterinaria , Tracto Gastrointestinal , Vivienda para Animales , Acero
19.
PLoS One ; 19(2): e0299149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422088

RESUMEN

Accurate analysis of the strength of steel-fiber-reinforced concrete (SFRC) is important for ensuring construction quality and safety. Cube compression and splitting tensile tests of steel fiber with different varieties, lengths, and dosages were performed, and the effects of different varieties, lengths, and dosages on the compressive and splitting properties of secondary concrete were obtained. It was determined that the compression and splitting strengths of concrete could be effectively improved by the addition of end-hooked and milled steel fibers. The compressive and splitting strengths of concrete can be enhanced by increasing the fiber length and content. However, concrete also exhibits obvious uncertainty owing to the comprehensive influence of steel fiber variety, fiber length, and fiber content. In order to solve this engineering uncertainty, the traditional RBF neural network is improved by using central value and weight learning strategy especially. On this basis, the RBF fuzzy neural network prediction model of the strength of secondary steel fiber-reinforced concrete was innovatively established with the type, length and content of steel fiber as input information and the compressive strength and splitting tensile strength as output information. In order to further verify the engineering reliability of the prediction model, the compressive strength and splitting tensile strength of steel fiber reinforced concrete with rock anchor beams are predicted by the prediction model. The results show that the convergence rate of the prediction model is increased by 15%, and the error between the predicted value and the measured value is less than 10%, which is more efficient and accurate than the traditional one. Additionally, the improved model algorithm is efficient and reasonable, providing technical support for the safe construction of large-volume steel fiber concrete projects, such as rock anchor beams. The fuzzy random method can also be applied to similar engineering fields.


Asunto(s)
Acero , Resistencia a la Tracción , Redes Neurales de la Computación , Reproducibilidad de los Resultados
20.
Clin Oral Investig ; 28(3): 183, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424224

RESUMEN

OBJECTIVE: To analyse three protocols in maintaining the stability of orthodontic therapy results and their effect on gingival health. MATERIALS AND METHODS: Sixty-six subjects (pre-therapeutic age 11-18 years; 68% female) randomly allocated into three retention groups of equal size were analysed. The first group had a 0.673 × 0.268 mm (0.027 × 0.011 inches) rectangular braided steel retention wire bonded to the lingual surfaces of all mandibular teeth from canine to canine, and the second group had a 0.406 mm (0.016 inches) round twisted steel wire. The third group was the control, without wires, and only with vacuum-formed retainers. All three groups had vacuum-formed removable retainers in the maxilla. The frequency of wire detachment/breakage/loss of retainer, the occurrence of crowding of mandibular incisors, and changes in intercanine width and gingival health were monitored. RESULTS: Incidence and severity of relapse differed between groups (p = 0.001 and 0.049) being most common in the removable retainer group (incidence 68.2%; severity 0.7 ± 1.0 mm), followed by the round wire group (36.4%; 0.5 ± 1.2 mm) and rectangular wire group (13.6%; 0.1 ± 0.1 mm). The intercanine width decreased more without a bonded retainer (incidence 68.2%; severity 0.5 ± 0.7 mm) and with the round wire more (45.5%; 0.5 ± 0.7 mm) than with the rectangular (27.3%; 0.1 ± 0.3 mm). The difference was significant for incidence (p = 0.025), but not severity. Detaching of the wires/breakage/loss of retainer was similar. There were no significant differences in the accumulation of biofilm, calculus and gingivitis between appliances. CONCLUSION: A rectangular wire is the most effective in retention, and the impact of retention appliances on gingival health is similar. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05121220. Registered 02 October 2021 - Retrospectively registered. CLINICAL RELEVANCE: Studying guidelines for reducing relapse, proper use of materials and appliances, the behavior of retention wires according to their profile in the retention phase, and possibilities of maintaining oral health will contribute to improving the stability of orthodontic therapy results.


Asunto(s)
Diseño de Aparato Ortodóncico , Retenedores Ortodóncicos , Adolescente , Niño , Femenino , Humanos , Masculino , Mandíbula , Aparatos Ortodóncicos Fijos , Recurrencia , Acero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...